The t-pebbling number of Jahangir graph J3,m
نویسندگان
چکیده
منابع مشابه
The 2 t - Pebbling Property on the Jahangir Graph
The t-pebbling number, ft(G), of a connected graph G, is the smallest positive integer such that from every placement of ft(G) pebbles, t pebbles can be moved to any specified target vertex by a sequence of pebbling moves, each move taking two pebbles off a vertex and placing one on an adjacent vertex. A graph G satisfies the 2t-pebbling property if 2t pebbles can be moved to a specified vertex...
متن کاملt-Pebbling Number of Some Multipartite Graphs
Given a configuration of pebbles on the vertices of a graph G, a pebbling move consists of taking two pebbles off some vertex v and putting one of them back on a vertex adjacent to v. A graph is called pebbleable if for each vertex v there is a sequence of pebbling moves that would place at least one pebble on v. The pebbling number of a graph G, is the smallest integer m such that G is pebblea...
متن کاملThe t-Pebbling Number is Eventually Linear in t
In graph pebbling games, one considers a distribution of pebbles on the vertices of a graph, and a pebbling move consists of taking two pebbles off one vertex and placing one on an adjacent vertex. The t-pebbling number πt(G) of a graph G is the smallest m such that for every initial distribution of m pebbles on V (G) and every target vertex x there exists a sequence of pebbling moves leading t...
متن کاملDomination in Jahangir Graph
Given graph G = (V,E), a dominating set S is a subset of vertex set V such that any vertex not in S is adjacent to at least one vertex in S. The domination number of a graph G is the minimum size of the dominating sets of G. In this paper we study some results on domination number, connected, independent, total and restrained domination number denoted by γ(G), γc(G) ,γi(G), γt(G) and γr(G) resp...
متن کاملThe Complexity of Graph Pebbling
In a graph G whose vertices contain pebbles, a pebbling move uv removes two pebbles from u and adds one pebble to a neighbor v of u. The optimal pebbling number b π(G) is the minimum k such that there exists a distribution of k pebbles to G so that for any target vertex r in G, there is a sequence of pebbling moves which places a pebble on r. The pebbling number π(G) is the minimum k such that ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proyecciones (Antofagasta)
سال: 2015
ISSN: 0716-0917
DOI: 10.4067/s0716-09172015000200005